The particulate matter concentration spatial prediction using interpolation techniques with machine learning
© 2019 IEEE. The air pollution problem have become the major global environmental problem. It also impacts to health, economic, traffic, and tourism of the nation. The air quality monitoring stations have been applied to measure the air quality factors in their surrounding area. However, the number...
Saved in:
Main Authors: | Pattaraporn Chuanchai, Paskorn Champrasert, Kitimapond Rattanadoung |
---|---|
格式: | Conference Proceeding |
出版: |
2020
|
主題: | |
在線閱讀: | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85073229398&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/67724 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
The emotional state classification using physiological signal interpretation framework
由: Kitimapond Rattanadoung, et al.
出版: (2018) -
Prediction of particulate matter concentration in air using data driven machine learning approach
由: Yang, Peishi
出版: (2024) -
Augmented sensors for particulate matter concentration prediction using supervised learning models
由: Chadaphim Photphanloet
出版: (2019) -
Probabilistic optimal interpolation for data assimilation between machine learning model predictions and real time observations
由: Wei, Yuying, et al.
出版: (2023) -
Concentrations and elemental analysis of airborne particulate matter in Chiang Mai, Thailand
由: Nakorn Tippayawong, et al.
出版: (2018)