Effects of mechanical instrumentation with commercially available instruments used in supportive peri-implant therapy: An in vitro study
© 2019 by Quintessence Publishing Co Inc. Purpose: To evaluate topographic changes and effectiveness of mechanical instrumentation upon machined (MA) and roughened (RG) surfaces of dental implants. Materials and Methods: The coronal one-third of seven RG and seven MA implants was coated with a mixtu...
Saved in:
Main Authors: | , , |
---|---|
Format: | Journal |
Published: |
2020
|
Subjects: | |
Online Access: | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85074866256&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/67772 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Chiang Mai University |
id |
th-cmuir.6653943832-67772 |
---|---|
record_format |
dspace |
spelling |
th-cmuir.6653943832-677722020-04-02T15:03:35Z Effects of mechanical instrumentation with commercially available instruments used in supportive peri-implant therapy: An in vitro study Benyapha Sirinirund Carlos Garaicoa-Pazmino Hom Lay Wang Dentistry © 2019 by Quintessence Publishing Co Inc. Purpose: To evaluate topographic changes and effectiveness of mechanical instrumentation upon machined (MA) and roughened (RG) surfaces of dental implants. Materials and Methods: The coronal one-third of seven RG and seven MA implants was coated with a mixture of cyanoacrylate and toluidine blue dye to resemble calculus. Implants were cleaned with three curettes (SS: stainless steel, PT: plastic, TI: titanium), two ultrasonic tips (UM: metal tip, UP: plastic tip), a titanium brush (TB), and an air-polishing device (AA) until visibly clean. Additionally, a simulation of 1- and 5-year supportive peri-implant therapy (SPT) was performed on 14 implants using the aforementioned instruments with 20 strokes/40 s (T1) or 100 strokes/200 s (T5). Each implant was evaluated using stereomicroscopy, atomic force microscopy, and scanning electron microscopy. Results: UM was the most effective instrument, with 0% average percentage of residual artificial calculus (RAC), followed by TB (2.89%) and UP (4.90%). SS was more effective than TI (15.43% vs 20.12% RAC, respectively), while PT failed to remove any deposit (100% RAC). AA completely removed deposits on RG surfaces but not MA surfaces (26.61% RAC). Noticeable topographic changes were observed between both implant surfaces. RG surfaces became less rough, whereas MA surfaces became rougher at both T1 and T5 with the exception of AA. Plastic- and titanium-like remnants were noted after debridement with PT, SS, and TI, respectively. Conclusion: Artificial calculus removal by mechanical instrumentation, with the exception of PT, was proven to be clinically effective. All instruments induced minor to major topographic changes upon dental implant surfaces. AA did not remarkably change MA and RG surfaces at both micrometer and nanometer levels. Findings from this study may impact the selection of instruments or devices used during SPT protocols. 2020-04-02T15:03:35Z 2020-04-02T15:03:35Z 2019-01-01 Journal 19424434 08822786 2-s2.0-85074866256 10.11607/jomi.7409 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85074866256&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/67772 |
institution |
Chiang Mai University |
building |
Chiang Mai University Library |
country |
Thailand |
collection |
CMU Intellectual Repository |
topic |
Dentistry |
spellingShingle |
Dentistry Benyapha Sirinirund Carlos Garaicoa-Pazmino Hom Lay Wang Effects of mechanical instrumentation with commercially available instruments used in supportive peri-implant therapy: An in vitro study |
description |
© 2019 by Quintessence Publishing Co Inc. Purpose: To evaluate topographic changes and effectiveness of mechanical instrumentation upon machined (MA) and roughened (RG) surfaces of dental implants. Materials and Methods: The coronal one-third of seven RG and seven MA implants was coated with a mixture of cyanoacrylate and toluidine blue dye to resemble calculus. Implants were cleaned with three curettes (SS: stainless steel, PT: plastic, TI: titanium), two ultrasonic tips (UM: metal tip, UP: plastic tip), a titanium brush (TB), and an air-polishing device (AA) until visibly clean. Additionally, a simulation of 1- and 5-year supportive peri-implant therapy (SPT) was performed on 14 implants using the aforementioned instruments with 20 strokes/40 s (T1) or 100 strokes/200 s (T5). Each implant was evaluated using stereomicroscopy, atomic force microscopy, and scanning electron microscopy. Results: UM was the most effective instrument, with 0% average percentage of residual artificial calculus (RAC), followed by TB (2.89%) and UP (4.90%). SS was more effective than TI (15.43% vs 20.12% RAC, respectively), while PT failed to remove any deposit (100% RAC). AA completely removed deposits on RG surfaces but not MA surfaces (26.61% RAC). Noticeable topographic changes were observed between both implant surfaces. RG surfaces became less rough, whereas MA surfaces became rougher at both T1 and T5 with the exception of AA. Plastic- and titanium-like remnants were noted after debridement with PT, SS, and TI, respectively. Conclusion: Artificial calculus removal by mechanical instrumentation, with the exception of PT, was proven to be clinically effective. All instruments induced minor to major topographic changes upon dental implant surfaces. AA did not remarkably change MA and RG surfaces at both micrometer and nanometer levels. Findings from this study may impact the selection of instruments or devices used during SPT protocols. |
format |
Journal |
author |
Benyapha Sirinirund Carlos Garaicoa-Pazmino Hom Lay Wang |
author_facet |
Benyapha Sirinirund Carlos Garaicoa-Pazmino Hom Lay Wang |
author_sort |
Benyapha Sirinirund |
title |
Effects of mechanical instrumentation with commercially available instruments used in supportive peri-implant therapy: An in vitro study |
title_short |
Effects of mechanical instrumentation with commercially available instruments used in supportive peri-implant therapy: An in vitro study |
title_full |
Effects of mechanical instrumentation with commercially available instruments used in supportive peri-implant therapy: An in vitro study |
title_fullStr |
Effects of mechanical instrumentation with commercially available instruments used in supportive peri-implant therapy: An in vitro study |
title_full_unstemmed |
Effects of mechanical instrumentation with commercially available instruments used in supportive peri-implant therapy: An in vitro study |
title_sort |
effects of mechanical instrumentation with commercially available instruments used in supportive peri-implant therapy: an in vitro study |
publishDate |
2020 |
url |
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85074866256&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/67772 |
_version_ |
1681426696898609152 |