Compact structure-preserving algorithm with high accuracy extended to the improved Boussinesq equation
© 2020 International Association for Mathematics and Computers in Simulation (IMACS) The improved Boussinesq equation is numerically studied using a higher-order compact finite difference technique. The aim is to achieve a mass and energy preserving scheme precisely on any time–space regions. The ad...
محفوظ في:
المؤلفون الرئيسيون: | B. Wongsaijai, C. Oonariya, K. Poochinapan |
---|---|
التنسيق: | دورية |
منشور في: |
2020
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85086635966&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/70413 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Performance of compact and non-compact structure preserving algorithms to traveling wave solutions modeled by the Kawahara equation
بواسطة: R. Chousurin, وآخرون
منشور في: (2020) -
Compact structure-preserving approach to solitary wave in shallow water modeled by the Rosenau-RLW equation
بواسطة: B. Wongsaijai, وآخرون
منشور في: (2018) -
A staggered-grid numerical algorithm for the extended Boussinesq equations
بواسطة: Lin, P., وآخرون
منشور في: (2014) -
A compact finite difference method for solving the general Rosenau-RLW equation
بواسطة: Wongsaijai,B., وآخرون
منشور في: (2015) -
A three-level average implicit finite difference scheme to solve equation obtained by coupling the Rosenau-KdV equation and the Rosenau-RLW equation
بواسطة: Wongsaijai,B., وآخرون
منشور في: (2015)