Beneficial effects of interactive physical-cognitive game-based training on fall risk and cognitive performance of older adults

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. Physical and cognitive declines are significant risk factors for falls. Promising evidence suggests that combined physical-cognitive training would be an effective fall risk reduction and cognitive improvement intervention. However, a limited...

Full description

Saved in:
Bibliographic Details
Main Authors: Kochaphan Phirom, Teerawat Kamnardsiri, Somporn Sungkarat
Format: Journal
Published: 2020
Subjects:
Online Access:https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85089682095&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/70609
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University
Description
Summary:© 2020 by the authors. Licensee MDPI, Basel, Switzerland. Physical and cognitive declines are significant risk factors for falls. Promising evidence suggests that combined physical-cognitive training would be an effective fall risk reduction and cognitive improvement intervention. However, a limited number of studies have been conducted and findings have been inconclusive. This study investigated the effects of interactive physical-cognitive game-based training on the fall risk and cognitive performance of older adults. Forty participants were randomly allocated to the intervention (n = 20) and control (n = 20) groups. Participants in the intervention group performed a 1 h session, 3 times a week for 12 weeks of the interactive physical-cognitive game-based training program. Fall risk (Physiological Profile Assessment, PPA; and Timed Up and Go, TUG) and cognitive outcome (Montreal Cognitive Assessment, MoCA) were assessed at pre-and post-intervention. Thirty-nine participants (mean age = 69.81 ± 3.78 years) completed the study (97.5%). At the end of the trial, participants in the intervention group demonstrated significant improvement in the PPA fall risk score (p = 0.015), postural sway (p = 0.005), MoCA score (p = 0.001), and TUG-dual task (p = 0.045) compared to controls. In conclusion, the interactive physical-cognitive, game-based training was effective in reducing physiological fall risk and improving cognitive function in community-dwelling older adults.