FLT3 and NPM1 gene mutations in childhood acute myeloblastic leukemia

Mutations of receptor tyrosine kinases are implicated in the constitutive activation and development of human hematologic malignancies. Mutations in fms-like tyrosine kinase 3 (FLT3) gene including internal tandem duplication (ITD) and point mutation in the tyrosine kinase domain (TKD) as well as in...

Full description

Saved in:
Bibliographic Details
Main Authors: Ekchol Mukda, Katsarin Pintaraks, Rachchadol Sawangpanich, Surapon Wiangnon, Samart Pakakasama
Other Authors: Thammasat University
Format: Article
Published: 2018
Subjects:
Online Access:https://repository.li.mahidol.ac.th/handle/123456789/11640
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Mahidol University
Description
Summary:Mutations of receptor tyrosine kinases are implicated in the constitutive activation and development of human hematologic malignancies. Mutations in fms-like tyrosine kinase 3 (FLT3) gene including internal tandem duplication (ITD) and point mutation in the tyrosine kinase domain (TKD) as well as in nucleoplasmin (NPM1) gene are associated with pathogenesis of acute myeloblastic leukemia (AML). Several reports have demonstrated high incidences of the FLT3 and NPM1 mutations in adult AML patients. Since the pathogenesis of pediatric AML is different from that of adult and the FLT3 and NPM1 mutations have not been well characterized in childhood AML. Therefore, the objective of this study was to determine the frequencies of FLT3 and NPM1 mutations in 64 newly diagnosed childhood AML patients. All blood and bone marrow samples were previously diagnosed with AML by using flow cytometry and/or cytochemistry. FLT3-ITD and FLT3-TKD were detected by PCR and PCR-RFLP methods, respectively. The NPM1 mutation was analyzed by PCR and direct DNA sequencing. The FLT3 mutations were detected in 7 of 64 (11.1%), including FLT3-ITD in 4 of 64 (6.3%) and FLT-TKD in 3 of 62 (4.8%). The NPM1 mutation was not detected in this cohort. By multivariate analysis, white blood cell counts, peripheral blood and bone marrow blast cell counts at diagnosis were significantly higher in children with FLT3-ITD (P < 0.05). In addition, the median percentage of CD117 was significantly higher in leukemic blast cells with FLT3-ITD than those with wild type (P=0.01). We did not find any FLT3 mutations in children aged less than 5 years. The AML M3 cell type was most frequently associated with FLT3 gene mutations (50%). In conclusion, the FLT3 mutations was found in 11.1% but none of NPM1 mutation was detected in Thai children with AML. These data support the hypothesis of different biology and pathogenesis between adult and childhood AML.