Duodenal reductase activity and spleen iron stores are reduced and erythropoiesis is abnormal in Dcytb knockout mice exposed to hypoxic conditions

Duodenal cytochrome b (Dcytb, Cybrd1) is a ferric reductase localized in the duodenum that is highly upregulated in circumstances of increased iron absorption. To address the contribution of Dcytb to total duodenal ferric reductase activity as well as its wider role in iron metabolism, we first meas...

Full description

Saved in:
Bibliographic Details
Main Authors: Jeehyea Choi, Patarabutr Masaratana, Gladys O. Latunde-Dada, Matthew Arno, Robert J. Simpson, Andrew T. McKie
Other Authors: King's College London
Format: Article
Published: 2018
Subjects:
Online Access:https://repository.li.mahidol.ac.th/handle/123456789/14571
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Mahidol University
id th-mahidol.14571
record_format dspace
spelling th-mahidol.145712018-06-11T12:21:44Z Duodenal reductase activity and spleen iron stores are reduced and erythropoiesis is abnormal in Dcytb knockout mice exposed to hypoxic conditions Jeehyea Choi Patarabutr Masaratana Gladys O. Latunde-Dada Matthew Arno Robert J. Simpson Andrew T. McKie King's College London Mahidol University Medicine Nursing Duodenal cytochrome b (Dcytb, Cybrd1) is a ferric reductase localized in the duodenum that is highly upregulated in circumstances of increased iron absorption. To address the contribution of Dcytb to total duodenal ferric reductase activity as well as its wider role in iron metabolism, we first measured duodenal ferric reductase activity in wild-type (WT) and Dcytb knockout (Dcytb -/- ) mice under 3 conditions known to induce gut ferric reductase, dietary iron deficiency, hypoxia, and pregnancy. Dcytb -/- and WT mice were randomly assigned to control (iron deficiency experiment, 48 mg/kg dietary iron, hypoxia experiment, normal atmospheric pressure, pregnancy experiment, nonpregnant animals) or treatment (iron deficiency experiment, 2-3 mg/kg dietary iron, hypoxia experiment, 53.3 kPa pressure, pregnancy experiment, d 20 of pregnancy) groups and duodenal reductase activity measured. Wefound no induction of ferric reductase activity in Dcytb -/- mice under any of these conditions, indicating there are no other inducible ferric reductases present in the duodenum. To test whether Dcytb was required for iron absorption in conditions with increased erythropoietic demand, we also measured tissue nonheme iron levels and hematological indices in WT and Dcytb -/- mice exposed to hypoxia. There was no evidence of gross alterations in iron absorption, hemoglobin, or total liver nonheme iron in Dcytb -/- mice exposed to hypoxia compared with WT mice. However, spleen nonheme iron was significantly less (6.7 ± 1.0 vs. 12.7 ± 0.9 nmol mg tissue -1 , P < 0.01, n = 7-8) in hypoxic Dcytb -/- compared with hypoxic WT mice and there was evidence of impaired reticulocyte hemoglobinization with a lower reticulocyte mean corpuscular hemoglobin (276 ± 1 vs. 283 ± 2 g · L -1 , P < 0.05, n = 7-8) in normoxic Dcytb -/- compared with normoxic WT mice. We therefore conclude that DCYTB is the primary iron-regulated duodenal ferric reductase in the gut and that Dcytb is necessary for optimal iron metabolism. © 2012 American Society for Nutrition. 2018-06-11T05:02:41Z 2018-06-11T05:02:41Z 2012-11-01 Article Journal of Nutrition. Vol.142, No.11 (2012), 1929-1934 10.3945/jn.112.160358 15416100 00223166 2-s2.0-84869128204 https://repository.li.mahidol.ac.th/handle/123456789/14571 Mahidol University SCOPUS https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84869128204&origin=inward
institution Mahidol University
building Mahidol University Library
continent Asia
country Thailand
Thailand
content_provider Mahidol University Library
collection Mahidol University Institutional Repository
topic Medicine
Nursing
spellingShingle Medicine
Nursing
Jeehyea Choi
Patarabutr Masaratana
Gladys O. Latunde-Dada
Matthew Arno
Robert J. Simpson
Andrew T. McKie
Duodenal reductase activity and spleen iron stores are reduced and erythropoiesis is abnormal in Dcytb knockout mice exposed to hypoxic conditions
description Duodenal cytochrome b (Dcytb, Cybrd1) is a ferric reductase localized in the duodenum that is highly upregulated in circumstances of increased iron absorption. To address the contribution of Dcytb to total duodenal ferric reductase activity as well as its wider role in iron metabolism, we first measured duodenal ferric reductase activity in wild-type (WT) and Dcytb knockout (Dcytb -/- ) mice under 3 conditions known to induce gut ferric reductase, dietary iron deficiency, hypoxia, and pregnancy. Dcytb -/- and WT mice were randomly assigned to control (iron deficiency experiment, 48 mg/kg dietary iron, hypoxia experiment, normal atmospheric pressure, pregnancy experiment, nonpregnant animals) or treatment (iron deficiency experiment, 2-3 mg/kg dietary iron, hypoxia experiment, 53.3 kPa pressure, pregnancy experiment, d 20 of pregnancy) groups and duodenal reductase activity measured. Wefound no induction of ferric reductase activity in Dcytb -/- mice under any of these conditions, indicating there are no other inducible ferric reductases present in the duodenum. To test whether Dcytb was required for iron absorption in conditions with increased erythropoietic demand, we also measured tissue nonheme iron levels and hematological indices in WT and Dcytb -/- mice exposed to hypoxia. There was no evidence of gross alterations in iron absorption, hemoglobin, or total liver nonheme iron in Dcytb -/- mice exposed to hypoxia compared with WT mice. However, spleen nonheme iron was significantly less (6.7 ± 1.0 vs. 12.7 ± 0.9 nmol mg tissue -1 , P < 0.01, n = 7-8) in hypoxic Dcytb -/- compared with hypoxic WT mice and there was evidence of impaired reticulocyte hemoglobinization with a lower reticulocyte mean corpuscular hemoglobin (276 ± 1 vs. 283 ± 2 g · L -1 , P < 0.05, n = 7-8) in normoxic Dcytb -/- compared with normoxic WT mice. We therefore conclude that DCYTB is the primary iron-regulated duodenal ferric reductase in the gut and that Dcytb is necessary for optimal iron metabolism. © 2012 American Society for Nutrition.
author2 King's College London
author_facet King's College London
Jeehyea Choi
Patarabutr Masaratana
Gladys O. Latunde-Dada
Matthew Arno
Robert J. Simpson
Andrew T. McKie
format Article
author Jeehyea Choi
Patarabutr Masaratana
Gladys O. Latunde-Dada
Matthew Arno
Robert J. Simpson
Andrew T. McKie
author_sort Jeehyea Choi
title Duodenal reductase activity and spleen iron stores are reduced and erythropoiesis is abnormal in Dcytb knockout mice exposed to hypoxic conditions
title_short Duodenal reductase activity and spleen iron stores are reduced and erythropoiesis is abnormal in Dcytb knockout mice exposed to hypoxic conditions
title_full Duodenal reductase activity and spleen iron stores are reduced and erythropoiesis is abnormal in Dcytb knockout mice exposed to hypoxic conditions
title_fullStr Duodenal reductase activity and spleen iron stores are reduced and erythropoiesis is abnormal in Dcytb knockout mice exposed to hypoxic conditions
title_full_unstemmed Duodenal reductase activity and spleen iron stores are reduced and erythropoiesis is abnormal in Dcytb knockout mice exposed to hypoxic conditions
title_sort duodenal reductase activity and spleen iron stores are reduced and erythropoiesis is abnormal in dcytb knockout mice exposed to hypoxic conditions
publishDate 2018
url https://repository.li.mahidol.ac.th/handle/123456789/14571
_version_ 1763497940225097728