Identification and expression of genes in response to cassava bacterial blight infection

© 2018, Institute of Plant Genetics, Polish Academy of Sciences, Poznan. Cassava bacterial blight (CBB) caused by Xanthomonas axonopodis pv. manihotis (or XAM) is a serious disease of cassava (Manihot esculenta Crantz). In this study, quantitative trait loci (QTL) associated with CBB infection were...

Full description

Saved in:
Bibliographic Details
Main Authors: Piengtawan Tappiban, Supajit Sraphet, Nattaya Srisawad, Duncan R. Smith, Kanokporn Triwitayakorn
Other Authors: Mahidol University
Format: Article
Published: 2019
Subjects:
Online Access:https://repository.li.mahidol.ac.th/handle/123456789/45001
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Mahidol University
Description
Summary:© 2018, Institute of Plant Genetics, Polish Academy of Sciences, Poznan. Cassava bacterial blight (CBB) caused by Xanthomonas axonopodis pv. manihotis (or XAM) is a serious disease of cassava (Manihot esculenta Crantz). In this study, quantitative trait loci (QTL) associated with CBB infection were identified in the F1 progenies of a cross between the “Huay Bong 60” and “Hanatee” cassava cultivars. The phenotype of disease severity was observed at 7, 10, and 12 days after inoculation (DAI). A total of 12 QTL were identified, of which 5, 6, and 1 were detected in 7, 10, and 12 DAI samples, respectively. Among all identified QTL, CBB14_10dai_1, CBB14_10dai_2, and CBB14_12dai showed the most significant (P < 0.0001) associations with CBB infection, and explained 21.3, 13.8, and 26.5% of phenotypic variation, respectively. Genes underlying the QTL were identified and their expression was investigated in resistant and susceptible cassava plants by real-time quantitative RT-PCR. The results identified candidate genes that showed significant differences in expression between resistant and susceptible lines, including brassinosteroid insensitive 1-associated receptor kinase 1-related (Manes.04G059100), cyclic nucleotide-gated ion channel 2 (Manes.02G051100), and autophagy-related protein 8a-related (Manes.17G026600) at 7 DAI, and regulator of nonsense transcripts 1 homolog (Manes.17G021900) at both 7 and 12 DAI. The expression pattern of all genes showed higher levels in resistant (B82, B32, B20, and B70) as compared to susceptible (HB60, B100, B95, and B47) plants. Overall, this study has identified QTL and markers linked to CBB infection trait, and identified candidate genes involved in CBB resistance. This information will be of use for better understanding defense mechanisms in cassava to bacterial blight disease.