T cell mediated immunity against influenza H5N1 nucleoprotein, matrix and hemagglutinin derived epitopes in H5N1 survivors and non-H5N1 subjects

Background. Protection against the influenza virus by a specific antibody is relatively strain specific; meanwhile broader immunity may be conferred by cell-mediated immune response to the conserved epitopes across influenza virus subtypes. A universal broad-spectrum influenza vaccine which confront...

Full description

Saved in:
Bibliographic Details
Main Authors: Pirom Noisumdaeng, Thaneeya Roytrakul, Jarunee Prasertsopon, Phisanu Pooruk, Hatairat Lerdsamran, Susan Assanasen, Rungrueng Kitphati, Prasert Auewarakul, Pilaipan Puthavathana
Other Authors: Siriraj Hospital
Format: Article
Published: 2022
Subjects:
Online Access:https://repository.li.mahidol.ac.th/handle/123456789/75706
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Mahidol University
id th-mahidol.75706
record_format dspace
spelling th-mahidol.757062022-08-04T18:15:39Z T cell mediated immunity against influenza H5N1 nucleoprotein, matrix and hemagglutinin derived epitopes in H5N1 survivors and non-H5N1 subjects Pirom Noisumdaeng Thaneeya Roytrakul Jarunee Prasertsopon Phisanu Pooruk Hatairat Lerdsamran Susan Assanasen Rungrueng Kitphati Prasert Auewarakul Pilaipan Puthavathana Siriraj Hospital Thailand Ministry of Public Health Mahidol University Thammasat University Thailand National Center for Genetic Engineering and Biotechnology The Government Pharmaceutical Organization Agricultural and Biological Sciences Biochemistry, Genetics and Molecular Biology Neuroscience Background. Protection against the influenza virus by a specific antibody is relatively strain specific; meanwhile broader immunity may be conferred by cell-mediated immune response to the conserved epitopes across influenza virus subtypes. A universal broad-spectrum influenza vaccine which confronts not only seasonal influenza virus, but also avian influenza H5N1 virus is promising. Methods. This study determined the specific and cross-reactive T cell responses against the highly pathogenic avian influenza A (H5N1) virus in four survivors and 33 non-H5N1 subjects including 10 H3N2 patients and 23 healthy individuals. Ex vivo IFN-γ ELISpot assay using overlapping peptides spanning the entire nucleoprotein (NP), matrix (M) and hemagglutinin (HA) derived from A/Thailand/1(KAN-1)/2004 (H5N1) virus was employed in adjunct with flow cytometry for determining T cell functions. Microneutralization (microNT) assay was performed to determine the status of previous H5N1 virus infection. Results. IFN-γ ELISpot assay demonstrated that survivors nos. 1 and 2 had markedly higher T cell responses against H5N1 NP, M and HA epitopes than survivors nos. 3 and 4; and the magnitude of T cell responses against NP were higher than that of M and HA. Durability of the immunoreactivity persisted for as long as four years after disease onset. Upon stimulation by NP in IFN-γ ELISpot assay, 60% of H3N2 patients and 39% of healthy subjects exhibited a cross-reactive T cell response. The higher frequency and magnitude of responses in H3N2 patients may be due to blood collection at the convalescent phase of the patients. In H5N1 survivors, the effector peptide-specific T cells generated from bulk culture PBMCs by in vitro stimulation displayed a polyfunction by simultaneously producing IFN-γ and TNF-α, together with upregulation of CD107a in recognition of the target cells pulsed with peptide or infected with rVac-NP virus as investigated by flow cytometry. Conclusions. This study provides an insight into the better understanding on the homosubtypic and heterosubtypic T cell-mediated immune responses in H5N1 survivors and non-H5N1 subjects. NP is an immunodominant target of cross-recognition owing to its high conservancy. Therefore, the development of vaccine targeting the conserved NP may be a novel strategy for influenza vaccine design. 2022-08-04T07:58:07Z 2022-08-04T07:58:07Z 2021-03-10 Article PeerJ. Vol.9, (2021) 10.7717/peerj.11021 21678359 2-s2.0-85102434667 https://repository.li.mahidol.ac.th/handle/123456789/75706 Mahidol University SCOPUS https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85102434667&origin=inward
institution Mahidol University
building Mahidol University Library
continent Asia
country Thailand
Thailand
content_provider Mahidol University Library
collection Mahidol University Institutional Repository
topic Agricultural and Biological Sciences
Biochemistry, Genetics and Molecular Biology
Neuroscience
spellingShingle Agricultural and Biological Sciences
Biochemistry, Genetics and Molecular Biology
Neuroscience
Pirom Noisumdaeng
Thaneeya Roytrakul
Jarunee Prasertsopon
Phisanu Pooruk
Hatairat Lerdsamran
Susan Assanasen
Rungrueng Kitphati
Prasert Auewarakul
Pilaipan Puthavathana
T cell mediated immunity against influenza H5N1 nucleoprotein, matrix and hemagglutinin derived epitopes in H5N1 survivors and non-H5N1 subjects
description Background. Protection against the influenza virus by a specific antibody is relatively strain specific; meanwhile broader immunity may be conferred by cell-mediated immune response to the conserved epitopes across influenza virus subtypes. A universal broad-spectrum influenza vaccine which confronts not only seasonal influenza virus, but also avian influenza H5N1 virus is promising. Methods. This study determined the specific and cross-reactive T cell responses against the highly pathogenic avian influenza A (H5N1) virus in four survivors and 33 non-H5N1 subjects including 10 H3N2 patients and 23 healthy individuals. Ex vivo IFN-γ ELISpot assay using overlapping peptides spanning the entire nucleoprotein (NP), matrix (M) and hemagglutinin (HA) derived from A/Thailand/1(KAN-1)/2004 (H5N1) virus was employed in adjunct with flow cytometry for determining T cell functions. Microneutralization (microNT) assay was performed to determine the status of previous H5N1 virus infection. Results. IFN-γ ELISpot assay demonstrated that survivors nos. 1 and 2 had markedly higher T cell responses against H5N1 NP, M and HA epitopes than survivors nos. 3 and 4; and the magnitude of T cell responses against NP were higher than that of M and HA. Durability of the immunoreactivity persisted for as long as four years after disease onset. Upon stimulation by NP in IFN-γ ELISpot assay, 60% of H3N2 patients and 39% of healthy subjects exhibited a cross-reactive T cell response. The higher frequency and magnitude of responses in H3N2 patients may be due to blood collection at the convalescent phase of the patients. In H5N1 survivors, the effector peptide-specific T cells generated from bulk culture PBMCs by in vitro stimulation displayed a polyfunction by simultaneously producing IFN-γ and TNF-α, together with upregulation of CD107a in recognition of the target cells pulsed with peptide or infected with rVac-NP virus as investigated by flow cytometry. Conclusions. This study provides an insight into the better understanding on the homosubtypic and heterosubtypic T cell-mediated immune responses in H5N1 survivors and non-H5N1 subjects. NP is an immunodominant target of cross-recognition owing to its high conservancy. Therefore, the development of vaccine targeting the conserved NP may be a novel strategy for influenza vaccine design.
author2 Siriraj Hospital
author_facet Siriraj Hospital
Pirom Noisumdaeng
Thaneeya Roytrakul
Jarunee Prasertsopon
Phisanu Pooruk
Hatairat Lerdsamran
Susan Assanasen
Rungrueng Kitphati
Prasert Auewarakul
Pilaipan Puthavathana
format Article
author Pirom Noisumdaeng
Thaneeya Roytrakul
Jarunee Prasertsopon
Phisanu Pooruk
Hatairat Lerdsamran
Susan Assanasen
Rungrueng Kitphati
Prasert Auewarakul
Pilaipan Puthavathana
author_sort Pirom Noisumdaeng
title T cell mediated immunity against influenza H5N1 nucleoprotein, matrix and hemagglutinin derived epitopes in H5N1 survivors and non-H5N1 subjects
title_short T cell mediated immunity against influenza H5N1 nucleoprotein, matrix and hemagglutinin derived epitopes in H5N1 survivors and non-H5N1 subjects
title_full T cell mediated immunity against influenza H5N1 nucleoprotein, matrix and hemagglutinin derived epitopes in H5N1 survivors and non-H5N1 subjects
title_fullStr T cell mediated immunity against influenza H5N1 nucleoprotein, matrix and hemagglutinin derived epitopes in H5N1 survivors and non-H5N1 subjects
title_full_unstemmed T cell mediated immunity against influenza H5N1 nucleoprotein, matrix and hemagglutinin derived epitopes in H5N1 survivors and non-H5N1 subjects
title_sort t cell mediated immunity against influenza h5n1 nucleoprotein, matrix and hemagglutinin derived epitopes in h5n1 survivors and non-h5n1 subjects
publishDate 2022
url https://repository.li.mahidol.ac.th/handle/123456789/75706
_version_ 1763489493104459776