The effects of enhanced formaldehyde clearance in a gross anatomy laboratory by floor plan redesign and dissection table adjustment

Formaldehyde has carcinogenic properties. It is associated with nasopharyngeal cancer and causes irritation of the eyes, nose, throat, and respiratory system. Formaldehyde exposure is a significant health concern for those participating in the gross anatomy laboratory, but no learning method can sub...

Full description

Saved in:
Bibliographic Details
Main Author: Durongphan A.
Other Authors: Mahidol University
Format: Article
Published: 2023
Subjects:
Online Access:https://repository.li.mahidol.ac.th/handle/123456789/81555
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Mahidol University
id th-mahidol.81555
record_format dspace
spelling th-mahidol.815552023-05-19T14:29:40Z The effects of enhanced formaldehyde clearance in a gross anatomy laboratory by floor plan redesign and dissection table adjustment Durongphan A. Mahidol University Environmental Science Formaldehyde has carcinogenic properties. It is associated with nasopharyngeal cancer and causes irritation of the eyes, nose, throat, and respiratory system. Formaldehyde exposure is a significant health concern for those participating in the gross anatomy laboratory, but no learning method can substitute cadaver dissection. We performed a formaldehyde level study in 2018, which found that most of the breathing zone (S-level) and environment (R-level) formaldehyde levels during laboratory sessions at the Faculty of Medicine Siriraj Hospital exceeded international ceiling standards. In the academic year 2019, we adapted the engineering rationale of the NIOSH hierarchy of controls to facilitate formaldehyde clearance by opening the dissection table covers and increasing the area per dissection table, then measured formaldehyde ceiling levels by formaldehyde detector tube with a gas-piston hand pump during (1) body wall, (2) upper limb, (3) head-neck, (4) thorax, (5) spinal cord removal, (6) lower limb, (7) abdomen, and (8) organs of special senses dissection sessions and comparing the results with the 2018 study. The perineum region data were excluded from analyses due to the laboratory closure in 2019 from the COVID-19 outbreak. There were statistically significant differences between the 2018 and 2019 S-levels (p < 0.001) and R-levels (p < 0.001). The mean S-level decreased by 64.18% from 1.34 ± 0.71 to 0.48 ± 0.26 ppm, and the mean R-level decreased by 70.18% from 0.57 ± 0.27 to 0.17 ± 0.09 ppm. The highest formaldehyde level in 2019 was the S-level in the body wall region (1.04 ± 0.3 ppm), followed by the S-level in the abdomen region (0.56 ± 0.08 ppm) and the spinal cord removal region (0.51 ± 0.29 ppm). All 2019 formaldehyde levels passed the OSHA 15-min STEL standard (2 ppm). The R-level in the special sense region (0.06 ± 0.02 ppm) passed the NIOSH 15-min ceiling limit (0.1 ppm). Three levels for 2019 were very close: the R-level in the head-neck region (0.11 ± 0.08 ppm), the abdomen region (0.11 ± 0.08), the body wall region (0.14 ± 0.12 ppm), and the S-level in the special sense region (0.12 ± 0.04 ppm). In summary, extensive analysis and removal of factors impeding formaldehyde clearance can improve the general ventilation system and achieve the OSHA 15-min STEL standard. 2023-05-19T07:29:40Z 2023-05-19T07:29:40Z 2023-05-01 Article Environmental Science and Pollution Research Vol.30 No.23 (2023) , 64246-64253 10.1007/s11356-023-26906-5 16147499 09441344 2-s2.0-85152904013 https://repository.li.mahidol.ac.th/handle/123456789/81555 SCOPUS
institution Mahidol University
building Mahidol University Library
continent Asia
country Thailand
Thailand
content_provider Mahidol University Library
collection Mahidol University Institutional Repository
topic Environmental Science
spellingShingle Environmental Science
Durongphan A.
The effects of enhanced formaldehyde clearance in a gross anatomy laboratory by floor plan redesign and dissection table adjustment
description Formaldehyde has carcinogenic properties. It is associated with nasopharyngeal cancer and causes irritation of the eyes, nose, throat, and respiratory system. Formaldehyde exposure is a significant health concern for those participating in the gross anatomy laboratory, but no learning method can substitute cadaver dissection. We performed a formaldehyde level study in 2018, which found that most of the breathing zone (S-level) and environment (R-level) formaldehyde levels during laboratory sessions at the Faculty of Medicine Siriraj Hospital exceeded international ceiling standards. In the academic year 2019, we adapted the engineering rationale of the NIOSH hierarchy of controls to facilitate formaldehyde clearance by opening the dissection table covers and increasing the area per dissection table, then measured formaldehyde ceiling levels by formaldehyde detector tube with a gas-piston hand pump during (1) body wall, (2) upper limb, (3) head-neck, (4) thorax, (5) spinal cord removal, (6) lower limb, (7) abdomen, and (8) organs of special senses dissection sessions and comparing the results with the 2018 study. The perineum region data were excluded from analyses due to the laboratory closure in 2019 from the COVID-19 outbreak. There were statistically significant differences between the 2018 and 2019 S-levels (p < 0.001) and R-levels (p < 0.001). The mean S-level decreased by 64.18% from 1.34 ± 0.71 to 0.48 ± 0.26 ppm, and the mean R-level decreased by 70.18% from 0.57 ± 0.27 to 0.17 ± 0.09 ppm. The highest formaldehyde level in 2019 was the S-level in the body wall region (1.04 ± 0.3 ppm), followed by the S-level in the abdomen region (0.56 ± 0.08 ppm) and the spinal cord removal region (0.51 ± 0.29 ppm). All 2019 formaldehyde levels passed the OSHA 15-min STEL standard (2 ppm). The R-level in the special sense region (0.06 ± 0.02 ppm) passed the NIOSH 15-min ceiling limit (0.1 ppm). Three levels for 2019 were very close: the R-level in the head-neck region (0.11 ± 0.08 ppm), the abdomen region (0.11 ± 0.08), the body wall region (0.14 ± 0.12 ppm), and the S-level in the special sense region (0.12 ± 0.04 ppm). In summary, extensive analysis and removal of factors impeding formaldehyde clearance can improve the general ventilation system and achieve the OSHA 15-min STEL standard.
author2 Mahidol University
author_facet Mahidol University
Durongphan A.
format Article
author Durongphan A.
author_sort Durongphan A.
title The effects of enhanced formaldehyde clearance in a gross anatomy laboratory by floor plan redesign and dissection table adjustment
title_short The effects of enhanced formaldehyde clearance in a gross anatomy laboratory by floor plan redesign and dissection table adjustment
title_full The effects of enhanced formaldehyde clearance in a gross anatomy laboratory by floor plan redesign and dissection table adjustment
title_fullStr The effects of enhanced formaldehyde clearance in a gross anatomy laboratory by floor plan redesign and dissection table adjustment
title_full_unstemmed The effects of enhanced formaldehyde clearance in a gross anatomy laboratory by floor plan redesign and dissection table adjustment
title_sort effects of enhanced formaldehyde clearance in a gross anatomy laboratory by floor plan redesign and dissection table adjustment
publishDate 2023
url https://repository.li.mahidol.ac.th/handle/123456789/81555
_version_ 1781414616837914624