PHYSICS INFORMED NEURAL NETWORK ON DIFFERENTIAL EQUATIONS
This final project aims to search for an approximate numerical solution of a differential equation using the Physics Informed Neural Network (PINN) method. This method uses a deep learning approach, namely, an artificial neural network. In the process of building a model, it takes information on...
Saved in:
主要作者: | Almira Suheri, Fidya |
---|---|
格式: | Final Project |
語言: | Indonesia |
在線閱讀: | https://digilib.itb.ac.id/gdl/view/74524 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Institut Teknologi Bandung |
語言: | Indonesia |
相似書籍
-
MITIGATING SHOCK PHENOMENON OF HYPERBOLIC PARTIAL DIFFERENTIAL EQUATIONS WITH PHYSICS INFORMED NEURAL NETWORKS
由: LIU ZHENGYANG
出版: (2024) -
DETERMINATING APPROXIMATION SOLUTION OF PARTIAL DIFFERENTIAL EQUATION USING PHYSICS-INFORMED NEURAL NETWORK (PINN)
由: Agnes Priscilla, Cyntia -
Physics-informed neural networks with non-differentiable loss
由: Yang, Junyan
出版: (2022) -
IMPLEMENTATION OF PHYSICS-INFORMED NEURAL NETWORKS USING SPIRAL OPTIMIZATION IN DETERMINING SOLUTION FOR BLACK-SCHOLES EQUATION
由: Cahyohartoto, Fairuz -
Graph neural differential equation networks for improved representation learning and robustness
由: Zhao, Kai
出版: (2025)