Stochastic Calculus for Fractional Brownian Motion and Applications
Fractional Brownian motion (fBm) has been widely used to model a number of phenomena in diverse fields from biology to finance. This huge range of potential applications makes fBm an interesting object of study. fBm represents a natural one-parameter extension of classical Brownian motion therefo...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Book |
Language: | English |
Published: |
Springer
2017
|
Subjects: | |
Online Access: | http://repository.vnu.edu.vn/handle/VNU_123/25958 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Vietnam National University, Hanoi |
Language: | English |
Summary: | Fractional Brownian motion (fBm) has been widely used to model a number of phenomena in diverse fields from biology to finance. This huge range of potential applications makes fBm an interesting object of study.
fBm represents a natural one-parameter extension of classical Brownian motion therefore it is natural to ask if a stochastic calculus for fBm can be developed. This is not obvious, since fBm is neither a semimartingale (except when H = ½), nor a Markov process so the classical mathematical machineries for stochastic calculus are not available in the fBm case. |
---|