A supervised learning algorithm for feedforward networks with inhibitory lateral connections
Artificial neural network models, particularly the perceptron and the backpropagation network, do not perform lateral inhibition, a function commonly performed by biological neural networks. This paper presents a supervised learning algorithm for feedforward networks with inhibitory lateral connecti...
Saved in:
主要作者: | Alvarez, Maria P. |
---|---|
格式: | text |
出版: |
Animo Repository
1997
|
主題: | |
在線閱讀: | https://animorepository.dlsu.edu.ph/faculty_research/12111 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | De La Salle University |
相似書籍
-
A learning algorithm for feedforward networks with inhibitory lateral connections
由: Alvarez, Maria P.
出版: (1995) -
Training issues and learning algorithms for feedforward and recurrent neural networks
由: TEOH EU JIN
出版: (2010) -
Feedforward control based on neural networks for hard disk drives
由: Ren, X., et al.
出版: (2014) -
Principles of convergent rate and generalization enhancement for feedforward sigmoid-like network
由: Khamron Sunat
出版: (2009) -
Principles of convergent rate and generalization enhancement for feedforward sigmoid-like network
由: Khamron Sunat
出版: (2003)