Solving the Shepherding Problem: Imitation Learning Can Acquire the Switching Algorithm

A single shepherd dog can herd a flock of sheep to a gate. Despite a heuristic algorithm of a dog based on adaptive switching between collecting the sheep when they are too dispersed and driving them once they are aggregated, it remains unknown how the dog learns the algorithm of switching. In fact,...

全面介紹

Saved in:
書目詳細資料
Main Authors: Go, Clark Kendrick C, Koganti, Nishanth, Ikeda, Kazushi
格式: text
出版: Archīum Ateneo 2021
主題:
在線閱讀:https://archium.ateneo.edu/mathematics-faculty-pubs/180
https://ieeexplore.ieee.org/document/9533722
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Ateneo De Manila University
實物特徵
總結:A single shepherd dog can herd a flock of sheep to a gate. Despite a heuristic algorithm of a dog based on adaptive switching between collecting the sheep when they are too dispersed and driving them once they are aggregated, it remains unknown how the dog learns the algorithm of switching. In fact, reinforcement learning models have not succeeded so far in reproducing the switching algorithm without explicitly making two strategies. Here, we show that an imitation learning model can reproduce the switching algorithm, that is, the dog learns the algorithm from demonstrations by an expert. We also confirmed that the dog does not simply copy the demonstrations but learns the required task by showing that it can herd more sheep than those in the given demonstrations.