Electrical properties of amorphous chalcogenide/silicon heterojunctions modified by ion implantation
Doping of amorphous chalcogenide films of rather dissimilar bonding type and resistivity, namely, Ga-La-S, GeTe, and Ge-Sb-Te by means of ion implantation of bismuth is considered. To characterize defects induced by ionbeam implantation space-charge-limited conduction and capacitance-voltage charact...
Saved in:
Main Authors: | , , , , , , , , , , , |
---|---|
其他作者: | |
格式: | Conference or Workshop Item |
語言: | English |
出版: |
2014
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/100033 http://hdl.handle.net/10220/19677 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
總結: | Doping of amorphous chalcogenide films of rather dissimilar bonding type and resistivity, namely, Ga-La-S, GeTe, and Ge-Sb-Te by means of ion implantation of bismuth is considered. To characterize defects induced by ionbeam implantation space-charge-limited conduction and capacitance-voltage characteristics of amorphous chalcogenide/silicon heterojunctions are investigated. It is shown that ion implantation introduces substantial defect densities in the films and their interfaces with silicon. This comes along with a gradual decrease in the resistivity and the thermopower coefficient. It is shown that conductivity in GeTe and Ge-Sb-Te films is consistent with the two-type carrier conduction model. It is anticipated that ion implantation renders electrons to become less localized than holes leading to electron conductivity in certain cases as, for example, in GeTe. |
---|