Interfacial chemistry and valence band offset between GaN and Al2O3 studied by X-ray photoelectron spectroscopy
The interface region between Ga-face n-type GaN and Al2O3 dielectric (achieved via atomic-layer deposition or ALD) is investigated by X-ray photoelectron spectroscopy (XPS). An increase in the Ga-O to Ga-N bond intensity ratio following Al2O3 deposition implies that the growth of an interfacial gall...
Saved in:
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2013
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/100139 http://hdl.handle.net/10220/10961 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | The interface region between Ga-face n-type GaN and Al2O3 dielectric (achieved via atomic-layer deposition or ALD) is investigated by X-ray photoelectron spectroscopy (XPS). An increase in the Ga-O to Ga-N bond intensity ratio following Al2O3 deposition implies that the growth of an interfacial gallium sub-oxide (GaOx) layer occurred during the ALD process. This finding may be ascribed to GaN oxidation, which may still happen following the reduction of a thin native GaOx by trimethylaluminum (TMA) in the initial TMA-only cycles. The valence band offset between GaN and Al2O3, obtained using both core-level and valence band spectra, is found to vary with the thickness of the deposited Al2O3. This observation may be explained by an upward energy band bending at the GaN surface (due to the spontaneous polarization induced negative bound charge on the Ga-face GaN) and the intrinsic limitation of the XPS method for band offset determination. |
---|