CMOS-MEMS capacitive sensors for intra-cranial pressure monitoring : sensor fabrication & system design
Low-frequency variation of intracranial pressure (ICP) is a key indicator determining the successful outcome of a patient, subjected to traumatic brain injury (TBI). Post-trauma ICP increase can lead to fatal secondary injuries and hence continuous ICP monitoring would be an essential modality requi...
محفوظ في:
المؤلفون الرئيسيون: | , , , , |
---|---|
مؤلفون آخرون: | |
التنسيق: | Conference or Workshop Item |
اللغة: | English |
منشور في: |
2013
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://hdl.handle.net/10356/100181 http://hdl.handle.net/10220/13608 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
المؤسسة: | Nanyang Technological University |
اللغة: | English |
الملخص: | Low-frequency variation of intracranial pressure (ICP) is a key indicator determining the successful outcome of a patient, subjected to traumatic brain injury (TBI). Post-trauma ICP increase can lead to fatal secondary injuries and hence continuous ICP monitoring would be an essential modality required in a neuro-monitoring system. This paper discusses the system design considerations of an integrated CMOS-MEMS sensor system for monitoring ICP in patients subjected to TBI. Design and fabrication steps of the on-chip CMOS-MEMS sensor are presented first. Interface circuit design challenges introduced by the low, not-well-controlled MEMS sensitivity and large offset due to the fabrication tolerance are discussed next. A review and comparison of the reported capacitive sensors and their interface circuits follows. The paper concludes discussing the biocompatible packaging of the system for in-vivo testing. |
---|