Discriminative deep metric learning for face verification in the wild
This paper presents a new discriminative deep metric learning (DDML) method for face verification in the wild. Different from existing metric learning-based face verification methods which aim to learn a Mahalanobis distance metric to maximize the inter-class variations and minimize the intra-c...
Saved in:
Main Authors: | Hu, Junlin, Lu, Jiwen, Tan, Yap Peng |
---|---|
其他作者: | School of Electrical and Electronic Engineering |
格式: | Conference or Workshop Item |
語言: | English |
出版: |
2015
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/100336 http://hdl.handle.net/10220/25706 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Adaptive discriminant learning for face recognition
由: Kan, Meina, et al.
出版: (2013) -
Distance metric learning for visual recognition
由: Hu, Junlin
出版: (2018) -
An adaptive dropout based deep metric learning algorithm
由: Tan, Ronald Tay Siang
出版: (2022) -
Deep transfer metric learning
由: Hu, Junlin, et al.
出版: (2016) -
Deep learning for snake pattern detection
由: Ching, Jia Chin
出版: (2020)