Observer based optical manipulation of biological cells with robotic tweezers
While several automatic manipulation techniques have recently been developed for optical tweezer systems, the measurement of the velocity of cell is required and the interaction between the cell and the manipulator of laser source is usually ignored in these formulations. Although the position of ce...
Saved in:
Main Authors: | , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2014
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/101577 http://hdl.handle.net/10220/18714 http://dx.doi.org/10.1109/tro.2013.2289593 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-101577 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-1015772019-12-06T20:40:49Z Observer based optical manipulation of biological cells with robotic tweezers Li, Xiang Yan, Xiao Sun, Dong Cheah, Chien Chern School of Electrical and Electronic Engineering DRNTU::Engineering::Electrical and electronic engineering While several automatic manipulation techniques have recently been developed for optical tweezer systems, the measurement of the velocity of cell is required and the interaction between the cell and the manipulator of laser source is usually ignored in these formulations. Although the position of cell can be measured by using a camera, the velocity of cell is not measurable and usually estimated by differentiating the position of cell, which amplifies noises and may induce chattering of the system. In addition, it is also assumed in existing methods that the image Jacobian matrix from the Cartesian space to image space of the camera is exactly known. In the presence of estimation errors or variations of depth information between the camera and the cell, it is not certain whether the stability of the system could still be ensured. In this paper, vision-based observer techniques are proposed for optical manipulation to estimate the velocity of cell. Using the proposed observer techniques, tracking control strategies are developed to manipulate biological cells with different Reynolds numbers, which do not require camera calibration and measurement of the velocity of cell. The control methods are based on the dynamic formulation where the laser source is controlled by the closed-loop robotic manipulation technique. The stability is analyzed using Lyapunov-like analysis. Simulation and experimental results are presented to illustrate the performance of the proposed cell manipulation methods. ASTAR (Agency for Sci., Tech. and Research, S’pore) Accepted version 2014-01-28T02:06:20Z 2019-12-06T20:40:49Z 2014-01-28T02:06:20Z 2019-12-06T20:40:49Z 2013 2013 Journal Article Cheah, C. C., Li, X. Yan, X., & Sun, D. (2013). Observer based optical manipulation of biological cells with robotic tweezers. IEEE transactions on robotics, PP(99), 1-13. 1552-3098 https://hdl.handle.net/10356/101577 http://hdl.handle.net/10220/18714 http://dx.doi.org/10.1109/tro.2013.2289593 en IEEE transactions on robotics © 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. The published version is available at: [http://dx.doi.org/10.1109/tro.2013.2289593]. 13 p. application/pdf |
institution |
Nanyang Technological University |
building |
NTU Library |
country |
Singapore |
collection |
DR-NTU |
language |
English |
topic |
DRNTU::Engineering::Electrical and electronic engineering |
spellingShingle |
DRNTU::Engineering::Electrical and electronic engineering Li, Xiang Yan, Xiao Sun, Dong Cheah, Chien Chern Observer based optical manipulation of biological cells with robotic tweezers |
description |
While several automatic manipulation techniques have recently been developed for optical tweezer systems, the measurement of the velocity of cell is required and the interaction between the cell and the manipulator of laser source is usually ignored in these formulations. Although the position of cell can be measured by using a camera, the velocity of cell is not measurable and usually estimated by differentiating the position of cell, which amplifies noises and may induce chattering of the system. In addition, it is also assumed in existing methods that the image Jacobian matrix from the Cartesian space to image space of the camera is exactly known. In the presence of estimation errors or variations of depth information between the camera and the cell, it is not certain whether the stability of the system could still be ensured. In this paper, vision-based observer techniques are proposed for optical manipulation to estimate the velocity of cell. Using the proposed observer techniques, tracking control strategies are developed to manipulate biological cells with different Reynolds numbers, which do not require camera calibration and measurement of the velocity of cell. The control methods are based on the dynamic formulation where the laser source is controlled by the closed-loop robotic manipulation technique. The stability is analyzed using Lyapunov-like analysis. Simulation and experimental results are presented to illustrate the performance of the proposed cell manipulation methods. |
author2 |
School of Electrical and Electronic Engineering |
author_facet |
School of Electrical and Electronic Engineering Li, Xiang Yan, Xiao Sun, Dong Cheah, Chien Chern |
format |
Article |
author |
Li, Xiang Yan, Xiao Sun, Dong Cheah, Chien Chern |
author_sort |
Li, Xiang |
title |
Observer based optical manipulation of biological cells with robotic tweezers |
title_short |
Observer based optical manipulation of biological cells with robotic tweezers |
title_full |
Observer based optical manipulation of biological cells with robotic tweezers |
title_fullStr |
Observer based optical manipulation of biological cells with robotic tweezers |
title_full_unstemmed |
Observer based optical manipulation of biological cells with robotic tweezers |
title_sort |
observer based optical manipulation of biological cells with robotic tweezers |
publishDate |
2014 |
url |
https://hdl.handle.net/10356/101577 http://hdl.handle.net/10220/18714 http://dx.doi.org/10.1109/tro.2013.2289593 |
_version_ |
1681036282381205504 |