Adaptive regional feedback control of robotic manipulator with uncertain kinematics and depth information

While much progress has been achieved in taskspace control of robot, existing task-space sensory feedback control methods fail when the sensor is out of working range. In this paper, we propose an adaptive regional feedback control strategy that enables the robot to start from an initial positio...

Full description

Saved in:
Bibliographic Details
Main Authors: Li, X., Cheah, Chien Chern
Other Authors: School of Electrical and Electronic Engineering
Format: Conference or Workshop Item
Language:English
Published: 2014
Subjects:
Online Access:https://hdl.handle.net/10356/101595
http://hdl.handle.net/10220/18732
http://ieeexplore.ieee.org.ezlibproxy1.ntu.edu.sg/xpl/login.jsp?tp=&arnumber=6315007&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F6297579%2F6314593%2F06315007.pdf%3Farnumber%3D6315007
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:While much progress has been achieved in taskspace control of robot, existing task-space sensory feedback control methods fail when the sensor is out of working range. In this paper, we propose an adaptive regional feedback control strategy that enables the robot to start from an initial position outside the field of view and leave the field of view during the movement. The robot kinematics is partitioned into a known internal portion and an unknown external portion. Cartesianspace feedback is used for region reaching control of the known portion and vision feedback is used for tracking control of the unknown portion. The dual feedback information is integrated into a unified controller without designing multiple controllers and switching between them. We shall show that the adaptive controller can transit smoothly from Cartesian-space feedback to vision feedback in the presence of uncertainties in robot dynamics, kinematics and depth information. Experimental results are presented to illustrate the performance of the proposed control method.