Room-temperature visible electroluminescence from aluminum nitride thin film embedded with aluminum nanocrystals
In this brief, room-temperature visible electroluminescence (EL) from aluminum nitride (AlN) thin films containing aluminum nanocrystals (nc-Al) prepared by a radio-frequency magnetron sputtering technique is reported. The EL shows a broad spectrum peaked at 565 nm (2.19 eV) when a negative gate vol...
Saved in:
Main Authors: | , , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2010
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/101982 http://hdl.handle.net/10220/6410 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | In this brief, room-temperature visible electroluminescence (EL) from aluminum nitride (AlN) thin films containing aluminum nanocrystals (nc-Al) prepared by a radio-frequency magnetron sputtering technique is reported. The EL shows a broad spectrum peaked at 565 nm (2.19 eV) when a negative gate voltage is applied. A linear relationship between the EL and the current transport in the nc-Al/AlN thin film system is observed, and both the current transport and the EL intensity exhibit a power-law dependence on the gate voltage. These results are explained in terms of the formation of percolation networks of tunneling paths by the nc-Al arrays and the radiative recombination of the injected electrons and holes via the deep-level defects at the locations of nc-Al along the tunneling paths. |
---|