Coexistence of write once read many memory and memristor in blend of Poly(3,4-ethylenedioxythiophene) : polystyrene sulfonate and polyvinyl alcohol

In this work, the coexistence of Write Once Read Many Memory (WORM) and memristor can be achieved in a single device of Poly(3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT: PSS) and Polyvinyl Alcohol (PVA) blend organic memory system. In memristor mode, the bistable resistance states of t...

Full description

Saved in:
Bibliographic Details
Main Authors: Nguyen, Viet Cuong, Lee, Pooi See
Other Authors: School of Materials Science & Engineering
Format: Article
Language:English
Published: 2018
Subjects:
Online Access:https://hdl.handle.net/10356/102462
http://hdl.handle.net/10220/46520
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:In this work, the coexistence of Write Once Read Many Memory (WORM) and memristor can be achieved in a single device of Poly(3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT: PSS) and Polyvinyl Alcohol (PVA) blend organic memory system. In memristor mode, the bistable resistance states of the device can be cycled for more than 1000 times. Once a large negative bias of −8V was applied to the device, it was switched to permanent high resistance state that cannot be restored back to lower resistance states. The mechanism of the memristor effect can be attributed to the charge trapping behaviour in PVA while the WORM effect can be explained as the electrochemical characteristic of PEDOT: PSS which harnesses the percolative conduction pathways. The results may facilitate multipurpose memory device with active tunability.