Comparative differences in the behavior of TiO2 and SiO2 food additives in food ingredient solutions

Nanotechnology is widely used in the food industry to improve the color, taste, and texture of food products. However, concerns regarding potential undesirable health effects remain. It is expected that interaction of engineered nanomaterials (ENMs) with food ingredients will influence their behavio...

Full description

Saved in:
Bibliographic Details
Main Authors: Yusoff, Ridhwan, Nguyen, Luong T. H., Chiew, Paul, Wang, Zheng Ming, Ng, Kee Woei
Other Authors: School of Materials Science & Engineering
Format: Article
Language:English
Published: 2019
Subjects:
Online Access:https://hdl.handle.net/10356/105439
http://hdl.handle.net/10220/48656
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Nanotechnology is widely used in the food industry to improve the color, taste, and texture of food products. However, concerns regarding potential undesirable health effects remain. It is expected that interaction of engineered nanomaterials (ENMs) with food ingredients will influence their behavior and the resulting corona. Nonetheless, there are limited systematic studies conducted to clarify this understanding to date. Herein, we investigated the behavior and corona formation of food grade titanium dioxide (TiO2) and silicon dioxide (SiO2) in solutions of model food ingredients including bovine serum albumin (BSA) and sucrose. Measurements using dynamic light scattering (DLS) showed that both TiO2 and SiO2 nanoparticles displayed a decrease in agglomerate sizes in the presence of both food ingredients. Both particles were negatively charged in all the conditions tested. Corona adsorption studies were carried out using multiple complementary methods including Fourier transform infrared (FTIR) spectroscopy, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-ToF-MS), transmission electron microscopy (TEM), micro bicinchoninic acid (BCA) protein assay, and thermogravimetric analysis (TGA). Comparative investigation showed that sucrose could disperse both particles more effectively than BSA and that SiO2 displayed greater adsorption capacity for both BSA and sucrose, compared to TiO2. Taken collectively, this study demonstrated the importance of considering food ingredient effects when mapping the behavior of ENMs in food products. Such understanding could be significant in the evaluation of biological effects, such as toxicity, of ENMs used in food products.