Breaking diffraction limit of far-field imaging via structured illumination bessel beam microscope (SIBM)
Breaking the diffraction limit in imaging microscopes with far-field imaging options has always been the thrust challenge for optical engineers and biologists over the years. Although structured illumination microscopy and Bessel beam assisted imaging has shown the capability of imaging with sub-dif...
Saved in:
Main Authors: | , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2019
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/106408 http://hdl.handle.net/10220/49624 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Breaking the diffraction limit in imaging microscopes with far-field imaging options has always been the thrust challenge for optical engineers and biologists over the years. Although structured illumination microscopy and Bessel beam assisted imaging has shown the capability of imaging with sub-diffraction resolutions, they rely on the use of objective lenses with large numerical apertures (NA). Hence, they fail to sustain resolutions at larger working distances. In this context, we demonstrate a method for nanoscale resolution imaging at longer working distances, named as Structured Illumination Bessel Microscopy (SIBM). The proposed method is envisaged for both biological and engineering applications that necessitate high imaging resolutions at large working distances. |
---|