CuMSe for thermoelectric applications

Although demand for thermoelectrics may have shown promising advantages due to nanoscale features, thermoelectric materials have paid considerable attention to their ability to convert waste heat to useful electricity. A rebirth in thermoelectric study led to substantial improvements in the thermoel...

Full description

Saved in:
Bibliographic Details
Main Author: Asgarali, Quresh
Other Authors: Alex Yan Qingyu
Format: Final Year Project
Language:English
Published: Nanyang Technological University 2020
Subjects:
Online Access:https://hdl.handle.net/10356/137222
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-137222
record_format dspace
spelling sg-ntu-dr.10356-1372222023-03-04T15:48:38Z CuMSe for thermoelectric applications Asgarali, Quresh Alex Yan Qingyu School of Materials Science and Engineering AlexYan@ntu.edu.sg Engineering::Materials::Microelectronics and semiconductor materials Although demand for thermoelectrics may have shown promising advantages due to nanoscale features, thermoelectric materials have paid considerable attention to their ability to convert waste heat to useful electricity. A rebirth in thermoelectric study led to substantial improvements in the thermoelectric merit figure, zT, including materials that had previously been meticulously examined. This study focuses on thermoelectric zT optimization by developing a comprehensive analysis of the electronic structure through amalgamation of optical properties, ab initio computed electronic band structures and electronic / thermoelectric properties. In IV-VI semiconductor materials (PbTe,PbSe,PbS), a fluctuating temperature-dependent optical absorption edge is presented which is well associated with the calculated ab initio molecular dynamics output. A higher union temperature of 700, 900 and 1000 K for PbTe, PbSe and PbS is projected, as opposed to previous works involving the merging of primary and secondary bands at 400 K. This disassembly can influence the modeling of electronic properties by providing a tangible value for the valence band and the offset band gap as a function of temperature. The alternative thermoelectric material, ZrNiSn, is examined for both its electronic and optical properties. Conversely, the transport properties imply a substantially different band gap, depending on whether the material is p-type or n-type doped. By quantifying and testifying the optical band gap value of 0.13 eV, the inconsistency in the gap computed from the electronic properties can be resolved by associating these assessments with the weighted mobility ratio, A, in narrow gap materials. Due to its low thermal conductivity and adjustable electrical conductivity, Ternary Cu_2 SnSe_3 material with a diamond-like structure has been fitted as one of the latent thermoelectric materials. In this study, the Cu_2 SnSe_3 powder is produced by the vacuum melting-quenching-annealing-grinding process. Electrical resistance, Seebeck coefficient and thermal conductivity measurement are used for the analysis of thermoelectric properties. Bachelor of Engineering (Materials Engineering) 2020-03-09T04:52:03Z 2020-03-09T04:52:03Z 2020 Final Year Project (FYP) https://hdl.handle.net/10356/137222 en MSE/19/149 application/pdf Nanyang Technological University
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic Engineering::Materials::Microelectronics and semiconductor materials
spellingShingle Engineering::Materials::Microelectronics and semiconductor materials
Asgarali, Quresh
CuMSe for thermoelectric applications
description Although demand for thermoelectrics may have shown promising advantages due to nanoscale features, thermoelectric materials have paid considerable attention to their ability to convert waste heat to useful electricity. A rebirth in thermoelectric study led to substantial improvements in the thermoelectric merit figure, zT, including materials that had previously been meticulously examined. This study focuses on thermoelectric zT optimization by developing a comprehensive analysis of the electronic structure through amalgamation of optical properties, ab initio computed electronic band structures and electronic / thermoelectric properties. In IV-VI semiconductor materials (PbTe,PbSe,PbS), a fluctuating temperature-dependent optical absorption edge is presented which is well associated with the calculated ab initio molecular dynamics output. A higher union temperature of 700, 900 and 1000 K for PbTe, PbSe and PbS is projected, as opposed to previous works involving the merging of primary and secondary bands at 400 K. This disassembly can influence the modeling of electronic properties by providing a tangible value for the valence band and the offset band gap as a function of temperature. The alternative thermoelectric material, ZrNiSn, is examined for both its electronic and optical properties. Conversely, the transport properties imply a substantially different band gap, depending on whether the material is p-type or n-type doped. By quantifying and testifying the optical band gap value of 0.13 eV, the inconsistency in the gap computed from the electronic properties can be resolved by associating these assessments with the weighted mobility ratio, A, in narrow gap materials. Due to its low thermal conductivity and adjustable electrical conductivity, Ternary Cu_2 SnSe_3 material with a diamond-like structure has been fitted as one of the latent thermoelectric materials. In this study, the Cu_2 SnSe_3 powder is produced by the vacuum melting-quenching-annealing-grinding process. Electrical resistance, Seebeck coefficient and thermal conductivity measurement are used for the analysis of thermoelectric properties.
author2 Alex Yan Qingyu
author_facet Alex Yan Qingyu
Asgarali, Quresh
format Final Year Project
author Asgarali, Quresh
author_sort Asgarali, Quresh
title CuMSe for thermoelectric applications
title_short CuMSe for thermoelectric applications
title_full CuMSe for thermoelectric applications
title_fullStr CuMSe for thermoelectric applications
title_full_unstemmed CuMSe for thermoelectric applications
title_sort cumse for thermoelectric applications
publisher Nanyang Technological University
publishDate 2020
url https://hdl.handle.net/10356/137222
_version_ 1759856805504090112