A hypoxia-responsive albumin-based nanosystem for deep tumor penetration and excellent therapeutic efficacy

Uncontrolled cancer cell proliferation, insufficient blood flow, and inadequate endogenous oxygen lead to hypoxia in tumor tissues. Herein, a unique type of hypoxia-responsive human serum albumin (HSA)-based nanosystem (HCHOA) is reported, prepared by cross-linking the hypoxia-sensitive azobenzene g...

Full description

Saved in:
Bibliographic Details
Main Authors: Yang, Guangbao, Phua, Fiona Soo Zeng, Lim, Wei Qi, Zhang, Rui, Feng, Liangzhu, Liu, Guofeng, Wu, Hongwei, Bindra, Anivind Kaur, Jana, Deblin, Liu, Zhuang, Zhao, Yanli
Other Authors: School of Physical and Mathematical Sciences
Format: Article
Language:English
Published: 2020
Subjects:
Online Access:https://hdl.handle.net/10356/137689
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Uncontrolled cancer cell proliferation, insufficient blood flow, and inadequate endogenous oxygen lead to hypoxia in tumor tissues. Herein, a unique type of hypoxia-responsive human serum albumin (HSA)-based nanosystem (HCHOA) is reported, prepared by cross-linking the hypoxia-sensitive azobenzene group between photosensitizer chlorin e6 (Ce6)-conjugated HSA (HC) and oxaliplatin prodrug-conjugated HSA (HO). The HCHOA nanosystem is stable under normal oxygen partial pressure with a size of 100–150 nm. When exposed to the hypoxic tumor microenvironment, the nanosystem can quickly dissociate into ultrasmall HC and HO therapeutic nanoparticles with a diameter smaller than 10 nm, significantly enabling their enhanced intratumoral penetration. After the dissociation, the quenched fluorescence of Ce6 in the produced HC nanoparticles can be recovered for bioimaging. At the same time, the production of singlet oxygen is increased because of the enhancement in the photoactivity of the photosensitizer. On account of these improvements, combined photodynamic therapy and chemotherapy is realized to display superior antitumor efficacy in vivo. Based on this simple strategy, it is possible to achieve the dissociation of hypoxic-responsive nanosystem to enhance the tumor penetration and therapeutic effect.