Subject adaptation with deep convolutional neural network for EEG-based motor imagery classification
Deep learning has emerged as a powerful tool for developing Brain-Computer Interface (BCI) systems. However, the scarcity of subject-specific data results in a marginal performance increase for deep learning models trained entirely on the data from a specific individual. To overcome this, many trans...
Saved in:
主要作者: | Zhang, Kaishuo |
---|---|
其他作者: | Guan Cuntai |
格式: | Final Year Project |
語言: | English |
出版: |
Nanyang Technological University
2020
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/138000 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |
相似書籍
-
Motor imagery classification based on deep learning
由: Geng, Zhiheng
出版: (2023) -
Adaptive transfer learning for EEG motor imagery classification with deep convolutional neural network
由: Zhang, Kaishuo, et al.
出版: (2022) -
An adaptive dropout based deep metric learning algorithm
由: Tan, Ronald Tay Siang
出版: (2022) -
Neural networks based pattern classification system for information extraction on disaster news
由: Li, Qi
出版: (2022) -
Real valued classification using complex neural networks
由: Pushkar Shukla.
出版: (2012)