Compression methods for approximate stochastic modelling
Understanding of the natural world can be accounted to effective information processing. Natural processes, however, are often riddled with enormous amount of information and high non-linearity. A need to simplify these problems becomes paramount for practical purposes. Computational mechanics has c...
Saved in:
主要作者: | Onggadinata, Kelvin |
---|---|
其他作者: | Gu Mile |
格式: | Final Year Project |
語言: | English |
出版: |
Nanyang Technological University
2020
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/139314 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |
相似書籍
-
Predictive modelling of quantum stochastic processes
由: Huang, Ruocheng
出版: (2021) -
Generalised polynomial chaos approximation for stochastic fractional partial differential equations
由: Teh, Yu Xuan
出版: (2023) -
Quantum-enhanced stochastic analysis
由: Chang, Derek Ding Cong
出版: (2023) -
Time-inconsistent stochastic linear-quadratic control in continuous time
由: Song, Wan Jing
出版: (2021) -
Parabolic systems and stochastic controls: nonlocality, nonlinearity, and time-inconsistency
由: Lei, Qian
出版: (2022)