Weakly-supervised 3D hand pose estimation from monocular RGB images
Compared with depth-based 3D hand pose estimation, it is more challenging to infer 3D hand pose from monocular RGB images, due to substantial depth ambiguity and the difficulty of obtaining fully-annotated training data. Different from existing learning-based monocular RGB-input approaches that requ...
Saved in:
Main Authors: | Cai, Yujun, Ge, Liuhao, Cai, Jianfei, Yuan, Junsong |
---|---|
其他作者: | School of Computer Science and Engineering |
格式: | Conference or Workshop Item |
語言: | English |
出版: |
2020
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/140530 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Hand PointNet : 3D hand pose estimation using point sets
由: Ge, Liuhao, et al.
出版: (2018) -
Egocentric hand pose estimation and distance recovery in a single RGB image
由: Liang, Hui, et al.
出版: (2016) -
HUMAN POSE ESTIMATION FROM MONOCULAR VIDEOS
由: CHENG YU
出版: (2022) -
Hough forest with optimized leaves for global hand pose estimation with arbitrary postures
由: Liang, Hui, et al.
出版: (2020) -
Real-time 3D hand pose estimation with 3D convolutional neural networks
由: Ge, Liuhao, et al.
出版: (2019)