Broadband absorption enhancement for InAsSb-based mid-infrared photodetectors

In modern detector technologies, antimony (Sb)-based photodetectors have shown great significances on the middle wavelength infrared (MWIR) spectra due to its various advantages in obtaining good detection performance. In this dissertation, the hetero InAsSb nip photodiode is designed as the basic M...

全面介紹

Saved in:
書目詳細資料
主要作者: Wang, Weilin
其他作者: ZHANG Dao Hua
格式: Thesis-Master by Coursework
語言:English
出版: Nanyang Technological University 2020
主題:
在線閱讀:https://hdl.handle.net/10356/141150
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
實物特徵
總結:In modern detector technologies, antimony (Sb)-based photodetectors have shown great significances on the middle wavelength infrared (MWIR) spectra due to its various advantages in obtaining good detection performance. In this dissertation, the hetero InAsSb nip photodiode is designed as the basic MWIR detector, where the large bandgap layers are introduced between absorption layer and contact layers to decrease noise current. To further increase the light absorption without sacrificing the response speed, four types of photon-trapping structures are designed and modeled in Finite Difference Time Domain (FDTD) simulation software. By simulating the reflection and absorption of devices w/o photon-trapping structure, significant reflection reduction is observed, and a relative absorption improvement of about 40% is reached for photon-trapping devices in the mid-wavelength region between 2 and 5 μm. The electric field distribution is also generated to demonstrate the lateral-mode effect on enhancing the absorption.