Control of the metal-to-insulator transition by substrate orientation in nickelates

We proved that the critical thickness for metal-to-insulator transition (MIT) of LaNiO3 could be controlled by substrate orientation. By means of density functional theory calculations, films grown on SrTiO3 substrates with (001), (110) and (111) orientations have different amount of charge transfer...

全面介紹

Saved in:
書目詳細資料
Main Authors: Peng, Jingjing, Ouyang, Bin, Liu, H. Y., Hao, Changshan, Tang, S. S., Gu, Y. D., Yan, Y.
其他作者: School of Physical and Mathematical Sciences
格式: Article
語言:English
出版: 2020
主題:
在線閱讀:https://hdl.handle.net/10356/143154
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:We proved that the critical thickness for metal-to-insulator transition (MIT) of LaNiO3 could be controlled by substrate orientation. By means of density functional theory calculations, films grown on SrTiO3 substrates with (001), (110) and (111) orientations have different amount of charge transfer across the interface. Different charge transfer induces different interfacial conductivity behavior and at the same time modifies the carrier density of adjacent LaNiO3 films. The manipulation of MIT by substrate orientation can be achieved through interfacial charge transfer induced interfacial conductive layer with the modified conductivity of LNO layer.