Model predictive trajectory tracking control of automated guided vehicle in complex environments

Autonomous navigation in a real-world industrial environment is in many ways a challenging task. One of the key challenges is rapid collision-free planning and execution of trajectories to reach any target position and orientation with high accuracy, taking into account the limitations of imperfectn...

Full description

Saved in:
Bibliographic Details
Main Authors: Chen, Chun-Lin, Li, Juncheng, Li, Maoxun, Xie, Lihua
Other Authors: School of Electrical and Electronic Engineering
Format: Conference or Workshop Item
Language:English
Published: 2020
Subjects:
Online Access:https://hdl.handle.net/10356/143716
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Autonomous navigation in a real-world industrial environment is in many ways a challenging task. One of the key challenges is rapid collision-free planning and execution of trajectories to reach any target position and orientation with high accuracy, taking into account the limitations of imperfectness of the vehicle. The model prediction-based motion planners have been successfully used in recent years to generate feasible motions for imperfect vehicles. This paper develops and implements a Model Predictive Control (MPC)-based trajectory controller for path tracking problem in narrow corridors. To evaluate the performance of the proposed method, we designed comparative simulations and experiments. We confirm that the proposed MPC-based controller can track the trajectory precisely and smoothly in specific complex environments. In addition, the proposed methodology can also be a suitable solution to other way-point tracking situations for an industrial mobile robot.