An ensemble of decision trees with random vector functional link networks for multi-class classification
Ensembles of decision trees and neural networks are popular choices for solving classification and regression problems. In this paper, a new ensemble of classifiers that consists of decision trees and random vector functional link network is proposed for multi-class classification. The random vector...
Saved in:
Main Authors: | Katuwal, Rakesh, Suganthan, Ponnuthurai Nagaratnam, Zhang, Le |
---|---|
其他作者: | School of Electrical and Electronic Engineering |
格式: | Article |
語言: | English |
出版: |
2020
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/143804 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Stacked autoencoder based deep random vector functional link neural network for classification
由: Katuwal, Rakesh, et al.
出版: (2020) -
Random vector functional link neural network based ensemble deep learning
由: Shi, Qiushi, et al.
出版: (2022) -
Mapping dengue risk in Singapore using Random Forest
由: Ong, Janet, et al.
出版: (2018) -
Oblique decision tree ensemble via twin bounded SVM
由: Ganaie, M. A., et al.
出版: (2022) -
Applying random forest and neural network model to predict customers' behaviors
由: Nguyen, Huong Ly
出版: (2020)