Multiple object tracking with attention to appearance, structure, motion and size

Objective of multiple object tracking (MOT) is to assign a unique track identity for all the objects of interest in a video, across the whole sequence. Tracking-by-detection is the most common approach used in addressing MOT problem. In this work, we propose a method to address MOT by defining a dis...

Full description

Saved in:
Bibliographic Details
Main Authors: Karunasekera, Hasith, Wang, Han, Zhang, Handuo
Other Authors: School of Electrical and Electronic Engineering
Format: Article
Language:English
Published: 2021
Subjects:
Online Access:https://hdl.handle.net/10356/146128
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Objective of multiple object tracking (MOT) is to assign a unique track identity for all the objects of interest in a video, across the whole sequence. Tracking-by-detection is the most common approach used in addressing MOT problem. In this work, we propose a method to address MOT by defining a dissimilarity measure based on object motion, appearance, structure, and size. We calculate the appearance and structure-based dissimilarity measure by matching histograms following a grid architecture. Motion and size for each track are predicted using the information from track's history. These dissimilarity values are then used in the Hungarian algorithm, in the data association step for track identity assignment. In addition, we introduce a method to address any false detection in stable tracks. The proposed method runs in real time following an online approach. We evaluate our method in both MOT17 benchmark data-set for pedestrian tracking and KITTI benchmark data-set for vehicle tracking using the same system parameters to verify the robustness of the proposed method. The method can achieve state-of-the-art results in both benchmarks.