Universal adversarial attacks on graph neural networks

This project aims to study the robustness of graph-level graph neural networks (GNNs) against universal adversarial attacks in white-box and grey-box scenarios. Graph-level GNNs are widely used in critical domains such as quantum chemistry, drug discovery, while the robustness of them against un...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Liao, Chang
مؤلفون آخرون: Tay, Wee Peng
التنسيق: Final Year Project
اللغة:English
منشور في: Nanyang Technological University 2021
الموضوعات:
الوصول للمادة أونلاين:https://hdl.handle.net/10356/149401
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Nanyang Technological University
اللغة: English

مواد مشابهة