Modelling customer satisfaction from online reviews using ensemble neural network and effect-based Kano model

With the rapid advances in information technology, an increasing number of online reviews are posted daily on the Internet. Such reviews can serve as a promising data source to understand customer satisfaction. To this end, in this paper, we proposed a method for modelling customer satisfaction from...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Bi, Jian-Wu, Liu, Yang, Fan, Zhi-Ping, Cambria, Erik
مؤلفون آخرون: School of Computer Science and Engineering
التنسيق: مقال
اللغة:English
منشور في: 2021
الموضوعات:
الوصول للمادة أونلاين:https://hdl.handle.net/10356/151229
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Nanyang Technological University
اللغة: English
الوصف
الملخص:With the rapid advances in information technology, an increasing number of online reviews are posted daily on the Internet. Such reviews can serve as a promising data source to understand customer satisfaction. To this end, in this paper, we proposed a method for modelling customer satisfaction from online reviews. In the method, customer satisfaction dimensions (CSDs) are first extracted from online reviews based on latent dirichlet allocation (LDA). The sentiment orientations of the extracted CSDs are identified using a support vector machine (SVM). Then, considering the existence of complex relationships among different CSDs and the customer satisfaction, an ensemble neural network based model (ENNM) is proposed to measure the effects of customer sentiments toward different CSDs on customer satisfaction. On this basis, to identify the category of each CSD from the customer’s perspective, an effect-based Kano model (EKM) is proposed. Finally, an empirical study, which consists of two parts (phones and cameras), is given to illustrate the effectiveness of the proposed method.