An energy-efficient convolution unit for depthwise separable convolutional neural networks
High performance but computationally expensive Convolutional Neural Networks (CNNs) require both algorithmic and custom hardware improvement to reduce model size and to improve energy efficiency for edge computing applications. Recent CNN architectures employ depthwise separable convolution to reduc...
Saved in:
Main Authors: | , , , , |
---|---|
其他作者: | |
格式: | Conference or Workshop Item |
語言: | English |
出版: |
2021
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/152096 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|