A Hilbert space theory of generalized graph signal processing
Graph signal processing (GSP) has become an important tool in many areas such as image processing, networking learning and analysis of social network data. In this paper, we propose a broader framework that not only encompasses traditional GSP as a special case, but also includes a hybrid framewo...
Saved in:
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2021
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/154495 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Graph signal processing (GSP) has become an important tool in many areas such
as image processing, networking learning and analysis of social network data.
In this paper, we propose a broader framework that not only encompasses
traditional GSP as a special case, but also includes a hybrid framework of
graph and classical signal processing over a continuous domain. Our framework
relies extensively on concepts and tools from functional analysis to generalize
traditional GSP to graph signals in a separable Hilbert space with infinite
dimensions. We develop a concept analogous to Fourier transform for generalized
GSP and the theory of filtering and sampling such signals. |
---|