Lasing-encoded microsensor driven by interfacial cavity resonance energy transfer

Microlasers are emerging tools for biomedical applications. In particular, whispering-gallery-mode (WGM) microlasers are promising candidates for sensing at the biointerface owing to their high quality-factor and potential in molecular assays, and intracellular and extracellular detection. However,...

Full description

Saved in:
Bibliographic Details
Main Authors: Yuan, Zhiyi, Wang, Ziyihui, Guan, Peng, Wu, Xiaoqin, Chen, Yu-Cheng
Other Authors: School of Electrical and Electronic Engineering
Format: Article
Language:English
Published: 2022
Subjects:
Online Access:https://hdl.handle.net/10356/154734
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Microlasers are emerging tools for biomedical applications. In particular, whispering-gallery-mode (WGM) microlasers are promising candidates for sensing at the biointerface owing to their high quality-factor and potential in molecular assays, and intracellular and extracellular detection. However, lasing particles with sensing functionality remain challenging since the overlap between the WGM optical mode and external gain medium is much lower compared to internal gain inside the cavity. To overcome this problem, the concept of Förster resonant energy transfer (FRET) is exploited on WGM droplet microlaser by separating donor and acceptor molecules at the cavity–surface interface. It is first discovered that the interfacial FRET laser not only originates from conventional FRET but utilizes coherent radiative energy transfer (CRET) to excite acceptor molecules by inducing light-harvesting effect near the cavity interface. Simulations and experiments have revealed that the absorption spectrum of individual analyte plays a crucial role in interfacial FRET laser. Distinct lasing spectra can therefore distinguish molecules of different absorption properties upon binding. Finally, detection of small fluorescent molecules and photosynthetic protein is performed. The results presented here not only demonstrate the wide-ranging potential of microlaser external cavity implementation in molecular sensing applications, but also provide comprehensive insights into cavity energy transfer in laser physics.