Sequential recommendation for canteen food recommendations in NTU

Recently, food recommendation has become more significant due to its potential to serve tremendous service demand and allow users to discover their preferred food items from a variety of choices. Nevertheless, to build an effective food recommender system, understanding the user’s dynamic food prefe...

Full description

Saved in:
Bibliographic Details
Main Author: Nguyen, Tien Nhan
Other Authors: Hui Siu Cheung
Format: Final Year Project
Language:English
Published: Nanyang Technological University 2022
Subjects:
Online Access:https://hdl.handle.net/10356/156633
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-156633
record_format dspace
spelling sg-ntu-dr.10356-1566332022-04-21T06:55:35Z Sequential recommendation for canteen food recommendations in NTU Nguyen, Tien Nhan Hui Siu Cheung School of Computer Science and Engineering ASSCHUI@ntu.edu.sg Engineering::Computer science and engineering::Computing methodologies::Artificial intelligence Recently, food recommendation has become more significant due to its potential to serve tremendous service demand and allow users to discover their preferred food items from a variety of choices. Nevertheless, to build an effective food recommender system, understanding the user’s dynamic food preference is a prerequisite. In this project, our aim is to apply sequential recommendation (SR) to model such evolving preference in user behaviours. We attempted to evaluate multiple attention-based SR models and apply transfer learning techniques to further improve the models’ performance. A canteen food review dataset is introduced comprising food stall reviews crawled from the NTU Food Hunter system. Four attention-based SR models, consisting of SASRec, TiSASRec, BERT4Rec, and STOSA models are evaluated on the Food Hunter dataset and other benchmark datasets. The objective of the SR model is to predict the next item based on the user’s past behaviour sequence. In addition, we compare Collaborative Filtering (CF) versus attention-based SR methods on a benchmark dataset and find that SR methods outperform CF methods in predicting the user’s following item. Because the Food Hunter dataset is relatively small, we use transfer learning techniques by pre-training the SR models on a larger food domain dataset named Amazon Food. The results show that transfer learning can significantly improve some models' performance on the Food Hunter dataset. Bachelor of Engineering (Computer Science) 2022-04-21T06:55:35Z 2022-04-21T06:55:35Z 2022 Final Year Project (FYP) Nguyen, T. N. (2022). Sequential recommendation for canteen food recommendations in NTU. Final Year Project (FYP), Nanyang Technological University, Singapore. https://hdl.handle.net/10356/156633 https://hdl.handle.net/10356/156633 en SCSE21-0531 application/pdf Nanyang Technological University
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic Engineering::Computer science and engineering::Computing methodologies::Artificial intelligence
spellingShingle Engineering::Computer science and engineering::Computing methodologies::Artificial intelligence
Nguyen, Tien Nhan
Sequential recommendation for canteen food recommendations in NTU
description Recently, food recommendation has become more significant due to its potential to serve tremendous service demand and allow users to discover their preferred food items from a variety of choices. Nevertheless, to build an effective food recommender system, understanding the user’s dynamic food preference is a prerequisite. In this project, our aim is to apply sequential recommendation (SR) to model such evolving preference in user behaviours. We attempted to evaluate multiple attention-based SR models and apply transfer learning techniques to further improve the models’ performance. A canteen food review dataset is introduced comprising food stall reviews crawled from the NTU Food Hunter system. Four attention-based SR models, consisting of SASRec, TiSASRec, BERT4Rec, and STOSA models are evaluated on the Food Hunter dataset and other benchmark datasets. The objective of the SR model is to predict the next item based on the user’s past behaviour sequence. In addition, we compare Collaborative Filtering (CF) versus attention-based SR methods on a benchmark dataset and find that SR methods outperform CF methods in predicting the user’s following item. Because the Food Hunter dataset is relatively small, we use transfer learning techniques by pre-training the SR models on a larger food domain dataset named Amazon Food. The results show that transfer learning can significantly improve some models' performance on the Food Hunter dataset.
author2 Hui Siu Cheung
author_facet Hui Siu Cheung
Nguyen, Tien Nhan
format Final Year Project
author Nguyen, Tien Nhan
author_sort Nguyen, Tien Nhan
title Sequential recommendation for canteen food recommendations in NTU
title_short Sequential recommendation for canteen food recommendations in NTU
title_full Sequential recommendation for canteen food recommendations in NTU
title_fullStr Sequential recommendation for canteen food recommendations in NTU
title_full_unstemmed Sequential recommendation for canteen food recommendations in NTU
title_sort sequential recommendation for canteen food recommendations in ntu
publisher Nanyang Technological University
publishDate 2022
url https://hdl.handle.net/10356/156633
_version_ 1731235712051707904