Contrastive adversarial domain adaptation for machine remaining useful life prediction
Enabling precise forecasting of the remaining useful life (RUL) for machines can reduce maintenance cost, increase availability, and prevent catastrophic consequences. Data-driven RUL prediction methods have already achieved acclaimed performance. However, they usually assume that the training and t...
Saved in:
Main Authors: | Mohamed Ragab, Chen, Zhenghua, Wu, Min, Foo, Chuan Sheng, Kwoh, Chee Keong, Yan, Ruqiang, Li, Xiaoli |
---|---|
其他作者: | School of Computer Science and Engineering |
格式: | Article |
語言: | English |
出版: |
2022
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/157026 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Self-supervised autoregressive domain adaptation for time series data
由: Ragab, Mohamed, et al.
出版: (2023) -
Conditional contrastive domain generalization for fault diagnosis
由: Ragab, Mohamed, et al.
出版: (2022) -
ADAST: Attentive cross-domain EEG-based sleep staging framework with iterative self-training
由: Eldele, Emadeldeen, et al.
出版: (2023) -
Cross-domain retinopathy classification with optical coherence tomography images via a novel deep domain adaptation method
由: Luo, Yuemei, et al.
出版: (2023) -
MobileDA: toward edge-domain adaptation
由: Yang, Jianfei, et al.
出版: (2022)