Tactile-guided robot manipulation

Tactile sensing was developed over the years to replicate the human sensory feature, touch. Touch senses have enabled us to understand our environment and react accordingly. Often, we are able to perform tasks solely based on our touch and vestibular senses. In this report, we will address the techn...

Full description

Saved in:
Bibliographic Details
Main Author: Thya, Lydia
Other Authors: Lin Zhiping
Format: Final Year Project
Language:English
Published: Nanyang Technological University 2022
Subjects:
Online Access:https://hdl.handle.net/10356/157977
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Tactile sensing was developed over the years to replicate the human sensory feature, touch. Touch senses have enabled us to understand our environment and react accordingly. Often, we are able to perform tasks solely based on our touch and vestibular senses. In this report, we will address the techniques used for performing blind insertion of a rigid object into its environment. The object will be grasped with a two-fingered gripper that is equipped with an aggregated force-torque sensor. The recent-state-of-the-art method ensures object and environment always remain in contact with its environment has been found to cause unwanted slippage or rotation of the grasped object during experiments. Object in contact with environment will have frictional force imposed causing the unwanted incipient slip and rotations. Instead, we propose an incremental stepping methodology to determine the cavities in the environment. This modification has demonstrated improvement in insertion accuracy as compared to the baseline methodology conducted by previous research.