Reinforcement learning for swarm systems

The application of deep reinforcement learning to swarm systems is currently an actively explored topic. Adapting multi-agent reinforcement learning algorithms to swarm systems is difficult because of dynamic neighbourhood sizes and the lack of agent identities. Hence a key component to building a g...

全面介紹

Saved in:
書目詳細資料
主要作者: Arumugam, Ramaswamy
其他作者: Zinovi Rabinovich
格式: Final Year Project
語言:English
出版: Nanyang Technological University 2022
主題:
在線閱讀:https://hdl.handle.net/10356/163384
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:The application of deep reinforcement learning to swarm systems is currently an actively explored topic. Adapting multi-agent reinforcement learning algorithms to swarm systems is difficult because of dynamic neighbourhood sizes and the lack of agent identities. Hence a key component to building a good Swarm RL algorithm is an information summarization module. There is currently no consensus on the best way to summarize the information from an agent's neighbourhood. Therefore we explore various techniques for information summarization. We evaluate these techniques on two tasks - cover and cluster. We also introduce a new method for summarization based on selecting the top K most important pieces of information from an agent's observation. In this paper, we provide an experimental study of our algorithm and its efficacy.