EAD-GAN: a generative adversarial network for disentangling affine transforms in images
This article proposes a generative adversarial network called explicit affine disentangled generative adversarial network (EAD-GAN), which explicitly disentangles affine transform in a self-supervised manner. We propose an affine transform regularizer to force the InfoGAN to have explicit properties...
Saved in:
Main Authors: | Liu, Letao, Jiang, Xudong, Saerbeck, Martin, Dauwels, Justin |
---|---|
其他作者: | School of Electrical and Electronic Engineering |
格式: | Article |
語言: | English |
出版: |
2023
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/164532 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |
相似書籍
-
Recurrent affine transform encoder for image representation
由: Liu, Letao, et al.
出版: (2023) -
Disentangled image representation: from affine transforms to facial attributes
由: Liu, Letao
出版: (2023) -
Disentangled Graph Collaborative Filtering
由: WANG XIANG, et al.
出版: (2020) -
Ceva's theorem: An application of affine transformation
由: Dee, Paulene N., et al.
出版: (1992) -
Affine transformations of the Euclidean plane with computer application
由: Daag, Abigail S., et al.
出版: (1992)