A cost-sensitive attention temporal convolutional network based on adaptive top-k differential evolution for imbalanced time-series classification

Imbalanced time-series classification (ITSC) is ubiquitous in many real-world applications. In this study, a novel cost-sensitive deep learning framework, namely ACS-ATCN, is proposed for ITSC. With the framework of ACS-ATCN, first, weighted class costs are optimized jointly with the hyperparameters...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Zhang, Xiaocai, Peng, Hui, Zhang, Jianjia, Wang, Yang
مؤلفون آخرون: School of Biological Sciences
التنسيق: مقال
اللغة:English
منشور في: 2023
الموضوعات:
الوصول للمادة أونلاين:https://hdl.handle.net/10356/164678
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Nanyang Technological University
اللغة: English

مواد مشابهة