Targeted drug discovery with adversarial graph autoencoders conditioned on gene expression data
Drug discovery has long been an expensive and inefficient process due to the vast chemical compound search space. This process has been iteratively sharpened and refined using computational approaches in order to narrow the scope of search. Separately, machine learning, in particular deep learnin...
Saved in:
主要作者: | Ong, Hiok Hian |
---|---|
其他作者: | Jagath C Rajapakse |
格式: | Final Year Project |
語言: | English |
出版: |
Nanyang Technological University
2023
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/166090 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Universal adversarial attacks on graph neural networks
由: Liao, Chang
出版: (2021) -
Adversarial patch detection
由: Yeong, Joash Ler Yuen
出版: (2022) -
Defence on unrestricted adversarial examples
由: Chan, Jarod Yan Cheng
出版: (2021) -
Demystifying adversarial attacks on neural networks
由: Yip, Lionell En Zhi
出版: (2020) -
Adversarial robustness of deep reinforcement learning
由: Qu, Xinghua
出版: (2022)