Data-driven fault detection and isolation in DC microgrids without prior fault data: a transfer learning approach

The lack of fault data is the major constraint on data-driven fault detection and isolation schemes for DC microgrids. To solve this problem, this paper develops an adversarial-based deep transfer learning model that can detect and classify short-circuit faults in DC microgrids without using histori...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Wang, Ting, Zhang, Chunyan, Hao, Zhiguo, Monti, Antonello, Ponci, Ferdinanda
مؤلفون آخرون: School of Electrical and Electronic Engineering
التنسيق: مقال
اللغة:English
منشور في: 2023
الموضوعات:
الوصول للمادة أونلاين:https://hdl.handle.net/10356/169004
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Nanyang Technological University
اللغة: English