Data-driven fault detection and isolation in DC microgrids without prior fault data: a transfer learning approach
The lack of fault data is the major constraint on data-driven fault detection and isolation schemes for DC microgrids. To solve this problem, this paper develops an adversarial-based deep transfer learning model that can detect and classify short-circuit faults in DC microgrids without using histori...
Saved in:
Main Authors: | , , , , |
---|---|
其他作者: | |
格式: | Article |
語言: | English |
出版: |
2023
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/169004 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |