Data-driven fault detection and isolation in DC microgrids without prior fault data: a transfer learning approach

The lack of fault data is the major constraint on data-driven fault detection and isolation schemes for DC microgrids. To solve this problem, this paper develops an adversarial-based deep transfer learning model that can detect and classify short-circuit faults in DC microgrids without using histori...

全面介紹

Saved in:
書目詳細資料
Main Authors: Wang, Ting, Zhang, Chunyan, Hao, Zhiguo, Monti, Antonello, Ponci, Ferdinanda
其他作者: School of Electrical and Electronic Engineering
格式: Article
語言:English
出版: 2023
主題:
在線閱讀:https://hdl.handle.net/10356/169004
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!

相似書籍