Variational relational point completion network for robust 3D classification
Real-scanned point clouds are often incomplete due to viewpoint, occlusion, and noise, which hampers 3D geometric modeling and perception. Existing point cloud completion methods tend to generate global shape skeletons and hence lack fine local details. Furthermore, they mostly learn a deterministic...
Saved in:
Main Authors: | Pan, Liang, Chen, Xinyi, Cai, Zhongang, Zhang, Junzhe, Zhao, Haiyu, Yi, Shuai, Liu, Ziwei |
---|---|
其他作者: | School of Computer Science and Engineering |
格式: | Article |
語言: | English |
出版: |
2023
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/172185 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |
相似書籍
-
3D object recovery and stylization with limited supervision
由: Zhang, Junzhe
出版: (2024) -
Robust partial-to-partial point cloud registration in a full range
由: Pan, Liang, et al.
出版: (2024) -
BEACon : a boundary embedded attentional convolution network for point cloud instance segmentation
由: Liu, Tianrui, et al.
出版: (2021) -
POINT CLOUD RECOGNITION WITH DEEP LEARNING
由: LI JIAXIN
出版: (2018) -
3D point cloud attribute compression using geometry-guided sparse representation
由: Gu, Shuai, et al.
出版: (2021)