Time series prediction of tunnel boring machine (TBM) performance during excavation using causal explainable artificial intelligence (CX-AI)
Since early warning is significant to ensure high-quality tunneling boring machine (TBM) construction, a real-time prediction method based on TBM data is proposed. To solve the “black box” problem of prediction by artificial intelligence (AI) methods, the causal explainable gated recurrent unit (CX-...
محفوظ في:
المؤلفون الرئيسيون: | Wang, Kunyu, Zhang, Limao, Fu, Xianlei |
---|---|
مؤلفون آخرون: | School of Civil and Environmental Engineering |
التنسيق: | مقال |
اللغة: | English |
منشور في: |
2023
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://hdl.handle.net/10356/172880 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
المؤسسة: | Nanyang Technological University |
اللغة: | English |
مواد مشابهة
-
CUTTERHEAD-SOIL INTERACTION IN TBM TUNNELLING IN DRY SAND
بواسطة: TAN GUAN LONG, EUGENE
منشور في: (2023) -
Spatio-temporal feature fusion for real-time prediction of TBM operating parameters: a deep learning approach
بواسطة: Fu, Xianlei, وآخرون
منشور في: (2022) -
Enhancing TBM operations under complex geological conditions using data-driven methods
بواسطة: Fu, Xianlei
منشور في: (2023) -
Data driven modeling and simulation for TBM reliability analysis in tunnels
بواسطة: Yeong, She Chan
منشور في: (2021) -
Data-driven forward and inverse analysis of two-dimensional soil consolidation using physics-informed neural network
بواسطة: Wang, Yu, وآخرون
منشور في: (2024)